Теория вероятностей. Лекция первая О вероятности наивно

Дмитрий Валерьевич Хлопин glukanat@mail.ru

Институт математики и механики им. Н.Н.Красовского

04.09.2018

Некоторый списочек литературы:

доходчивый Чернова Н.И. Теория вероятностей. Новосибирск, 2007 парашютистам Босс В. Том 4. Вероятность. Информация. Статистика. олдскул Колмогоров А.Н. Основные понятия теории вероятностей

The Best Феллер В. Введение в теорию вероятностей и ее приложения (2т)

спелеологам Ширяев А.Н. Вероятность (2т)

альпинистам Синай Я.Г., Коралов Л.Б. Теория вероятностей и случайные процессы

от практики Кельберт М.Я., Сухов Ю.М. Вероятность и статистика в примерах и задачах (3т)

гробы от МФТИ Стохастический анализ в задачах. Ч. І гробы от МГУ Ширяев А.Н. Задачи по теории вероятностей для интуиции Секей Г. Парадоксы в теории вероятностей и математической статистике

Цель курса:

разобраться в основных понятиях теории вероятностей, случайных процессов и математической статистики.

Задача первого семестра:

понятия "вероятностное пространство", "случайная величина", "(условное) математическое ожидание".

Первое из них — вероятностное пространство.

Вероятностное пространство $(\Omega, \mathcal{F}, \mathbb{P})$. Наивный взгляд

Вероятностное пространство $\,-\,\,$ это тройка $(\Omega,\mathcal{F},\mathbb{P})$. Пусть пока

- Ω множество элементарных событий (исходов), некоторое непустое множество;
- ${\mathcal F}$ пока не уточняем, что это такое;
- \mathbb{P} вероятность.

Пример 1. ("правильная монета") Подбрасываем монетку; $\Omega = \{O, P\}$. Вероятности орла и решки по 1/2.

Пример 2. ("правильный кубик") Подбрасываем кубик; $\Omega = \{1, 2, 3, 4, 5, 6\}$. Вероятности всех исходов по 1/6.

Уточняем: наверное, \mathbb{P} — функция из Ω в \mathbb{R} .

1-й наивный способ задания вероятности

Пусть множество Ω конечно, его мощность $|\Omega|=n$. Будем считать, что все исходы равновероятны. Тогда для всякого $\omega \in \Omega$ зададим

$$\mathbb{P}(\omega) = \frac{1}{|\Omega|} = \frac{1}{n}.$$

Пример 3. $\Omega = \{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}, |\Omega| = 11. \mathbb{P}(2) = 1/11.$

Пример 4. ("кубики") Подбрасываем два кубика. Найти вероятность того, что сумма равна 2.

Пример 5. ("правильные кубики") Подбрасываем два кубика. Найти вероятность того, что сумма равна 7.

Уточняем: вероятность нужна не только для элементарных исходов.

Вероятностное пространство $(\Omega, \mathcal{F}, \mathbb{P})$. Что хочется?

 \mathbb{P} — функция из множества 2^Ω всевозможных подмножеств множества Ω в $\mathbb{R}.$

Назовем эти подмножества событиями. Например,

 Ω — достоверное событие, \varnothing — невозможное событие.

 $\mathbb{P}(A)$ — вероятность того, что произошло событие A.

Свойства:

Xочу0 $\mathbb{P}(\emptyset) = 0$

Хочу $1 \mathbb{P}(\Omega) = 1$

Хочу2 Из $A \subset B$ следует $\mathbb{P}(A) \leq \mathbb{P}(B)$.

Все хотелки выполнены, например, в...

Определение классической вероятности

Эксперимент удовлетворяет классическому определению вероятности, если Ω состоит из конечного числа равновозможных исходов, а вероятность события A задается как отношение числа исходов в событии A к общему числу исходов:

$$\mathbb{P}(A) = \frac{|A|}{|\Omega|} \qquad \forall A \in 2^{\Omega}.$$

Пример 6. Достаем наудачу одно домино. Найти вероятность того, что число точек на этом домино равно 7.

Почему классики не хватает...

Пример 7. Палку случайно разломили на два куска. Найдите вероятность того, что каждый из кусков не больше другого.

Пример 8. Перед Вами отрезок, Вы выбрали случайно точку на нем, но никому не показали. С какой вероятностью Ваш сосед угадает эту точку?

2й наивный способ задания вероятности

Пусть Ω — область в плоскости, а A — её непустая подобласть. Назовем вероятностью события A отношение площадей: $\mathbb{P}(A) = \frac{S(A)}{S(\Omega)}$.

Пример 9. В окружности случайно провели хорду. Найти вероятность того, что ее длина больше стороны вписанного в окружность равностороннего треугольника.

Банальная задача: парадокс Бертрана I

Пример 9. В окружности случайно провели хорду. Найти вероятность того, что ее длина больше стороны вписанного в окружность равностороннего треугольника.

Решений у парадокса Бертрана много. Например...

Решение 1. Хорду восстановим по ее середине. Середина — произольная точка на круге. Ω — большой круг. Вписанный в треугольник круг — в точности то, что требуется. Поскольку их радиусы — части одной медианы, точка пересечения медиан делит каждую медиану в отношении 1 к 2, то отношение площадей кругов равно $(1/2)^2$.

Ответ: 1/4.

Банальная задача: парадокс Бертрана II

Решение 2. Вместо хорды рассматриваем её середину. Середину понимаем как случайно взятые точку на окружности S^1 и точку на радиусе, проведенном к первой точке. Теперь $\Omega = [0,1] \times S^1$. Годятся точки, до которых от центра расстояние меньше половины радиуса (точка пересечения медиан делит каждую медиану в отношении 1×2). Ответ: 1/2.

Решение 3. Вместо хорды выбираем ее концы (или точку и центральный угол, по часовой, от нее). Получаем $\Omega = S^1 \times S^1$ или $\Omega = [0,2\pi] \times S^1$ соответственно. Выбор первой точки вероятность не меняет, второй выбор нас устраивает в трети случаев.

Ответ: 1/3.

Решение 4. Вместо хорды рассматриваем точку и длину хорды. $\Omega = S^1 \times [0,2]$. От точки ничего не зависит. Нужна длина не меньше длины стороны вписанного треугольника.

Ответ: $1 - \sqrt{3}/2$.

Геометрическая вероятность

Эксперимент удовлетворяет геометрическому определению вероятности, если все исходы можно изобразить в виде некоторой области Ω конечномерного пространства, а вероятность подмножества зависит только от меры (длины, площади, объема, ... n-мерного объема) этого подмножества и задается по формуле

$$\mathbb{P}(A) = \frac{meas(A)}{meas(\Omega)}.$$

Но как определить что такое область? Какой именно взять объем? Что такое "изобразить"? Что такое "не зависит от формы и расположения"?... А если Ω — фрактал, например? Или еще проще — прямая?

Пара геометрических задачек на вырост

Задача (от 0.7 баллов). [охватить сосну] На миллиметровку бросают сосновую иголку длиной 1 см. Найдите среднее число пересечений с линиями сетки (да, сосновая иголка прямой быть не обязана).

Задача (от 0.7 баллов). [о круглых кирпичах] Летит кирпич размером $3\times4\times5$. И так волшебно вращается, что все его положения относительно своего центра масс равновероятны. Солнце в зените, найдите среднюю площадь тени.

Биномиальная схема независимых испытаний Бернулли І

Пусть элементарное событие — последовательность из нулей и единиц, результат последовательности испытаний, в каждом из которых вероятности успеха и неуспеха не меняются: вероятность успеха равна $p \in (0,1)$, неуспеха — q=1-p. Пусть число испытаний конечно, n. Тогда

 Ω_n = {конечные строки из нулей и единиц длины n} $\cong 2^n$, \mathcal{F}_n = 2^{Ω_n} .

При p=q=1/2 вероятность каждой конечной строки равна 2^{-n} , все исходы равновероятны.

А при n = 12 и произвольных p,q (p+q=1) вероятность конечной строки $\mathbb{P}\{\text{``100111110001''}\}$ равна p^7q^5 .

В общем случае, в схеме Бернулли вероятность элементарного исхода задается следующим образом:

 $\mathbb{P}\{\text{данная строка}\} = p^{\text{число успехов в строке}} q^{\text{число неуспехов в строке}}.$

Подумать: Почему именно так?

Биномиальная схема независимых испытаний Бернулли II

Пусть

$$\Omega_n$$
 = {конечные строки из нулей и единиц длины n } \mathcal{F}_n = 2^{Ω_n} ; $\mathbb{P}\{\omega\} = p^{\text{число успехов в строке}} q^{\text{число неуспехов в строке}} \forall \omega \in \Omega.$

При этом оказывается, что $\mathbb{P}\{$ число успехов ровно $k\} = C_n^k p^k q^{n-k}$.

Подумать: Почему именно так? Как распространить \mathbb{P} на всё $\mathcal{F}_n = 2^{\Omega_n}$? Подумать: Можем ли мы сузить Ω_n , рассматривая меньшее множество исходов? Например, только первый? Или только второй? Или первый и второй вместе? А объединить? А что при этом будет происходить с \mathcal{F}_n и \mathbb{P} ?

<u>Подумать:</u> Можем ли мы считать, что число испытаний бесконечно, а то, что мы знаем лишь первые n, — временное явление?

Итог лекции:

Пока вероятностное пространство — это тройка $(\Omega, \mathcal{F}, \mathbb{P})$, где Ω — множество элементарных событий (исходов), некоторое непустое множество; \mathcal{F} — множество событий, равное 2^{Ω} (наивные...); \mathbb{P} — вероятность, монотонная функция $\mathbb{P}: \mathcal{F} \to [0,1]$, т.е. $0 = \mathbb{P}(\varnothing) \leq \mathbb{P}(A) \leq \mathbb{P}(B) \leq \mathbb{P}(\Omega) = 1$ $\forall A, B \in \mathcal{F}, A \subset B$.

Подумать: задать какую-нибудь вероятность на прямой (как на Ω), ну или например на множестве натуральных чисел. А вот еще бы равномерную выдумать...

Подумать: сколько нулей надо сложить, чтобы получить единицу?